Каким может быть расстояние между наружным и внутренним блоками кондиционера
Наружный и внутренний блоки кондиционера размещают на разном расстоянии друг от друга. От чего зависит этот параметр и насколько он критичен для климатических установок?
Как работает кондиционер
В кондиционере хладагент (фреон) циркулирует по замкнутой системе. Непрерывный процесс его перехода из одного агрегатного состояния в другое обеспечивает охлаждение воздуха в помещении. В газообразном состоянии фреон поглощает тепло, а в жидком – отдает. При этом конденсация хладагента происходит при высоких показателях давления и температуры, а кипение – при низких.
Процесс происходит следующим образом.
В испарителе хладагент находится в парообразном состоянии. Его всасывает компрессор (участок 1-1) и сжимает до 15–25 атмосфер. В результате температура пара повышается до +70÷90 °С.
Из компрессора горячий пар направляется в конденсатор (участок 2-2), где охлаждается до температуры 10÷20 °С выше температуры атмосферного воздуха, конденсируется и превращается в жидкость.
Конденсатор находится в наружном блоке, его размер подбирается таким образом, чтобы весь поступивший в него пар успел перейти в жидкость.
Из конденсатора жидкий хладагент при высоком давлении и температуре попадает в регулятор потока. Здесь давление резко падает, небольшая часть жидкости испаряется, остальная попадает в испаритель (точка 4), где нагревается от воздуха в помещении, в котором установлен внутренний блок. Жидкость закипает и переходит в парообразное состояние. Далее процесс повторяется.
Что будет происходить в кондиционере при слишком короткой или, наоборот, слишком длинной протяженности фреоновой магистрали?
Короткая протяженность магистрали
Производители далеко не всегда указывают минимально допустимую протяженность фреоновой магистрали, но опытные монтажники рекомендуют делать ее не короче трех метров.
Дело в том, что при более короткой длине трассы фреон в испарителе может не успеть полностью перейти в газообразное состояние. Он продолжит кипеть в трубе магистрали, в жидком состоянии попадет в компрессор, что приведет к гидродинамическому удару. В результате поломаются клапаны и другие детали компрессора.
Есть несколько аргументов «против» магистралей короче трех метров:
- выйдет из строя компрессор из-за гидроудара;
- могут перейти вибрации от наружного блока к внутреннему;
- неприятный шумовой эффект из-за бульканья жидкого фреона в магистрали.
Длинная протяженность магистрали
Изготовители указывают производительность своих кондиционеров и максимально допустимую протяженность фреоновой магистрали. Эти параметры тесно связаны: чем выше производительность по холоду, тем большей может быть длина трассы. Так, для моделей производительностью 2,5 кВт предельная протяженность магистрали не превышает 20 м, а для полупромышленных кондиционеров производительностью 8 кВт она может достигать 50 м.
При этом есть одна важная деталь: показатели производительности указывают для оптимальной длины магистрали – 7,5 м. При увеличении протяженности трассы цифры меняются.
Примером падения производительности могут выступить следующие показатели:
Длина магистрали, м
Падение производительности в % для кондиционеров с разными значениями холодопроизводительности
Источник
Установка кондиционера длина магистрали
Прежде чем рассматривать такую, казалось бы, простую тему, как максимальная длина трубопроводов (открывай каталог производителя и смотри, какая там максимальная длина), я хочу задать один вопрос: «А что такое инженер в нашей специальности?» Тот, который смотрит в каталог и выдаёт то, что там написано? Но это может сделать и обычный менеджер, знаний гидравлики и термодинамики для этого не нужно. Наверное, инженер — это специалист, который видит немного глубже цифр каталога. Специалист, который может объяснить, откуда взялись эти цифры.
Помню, был спор с уважаемым человеком, который в защиту рекламных каталогов сказал следующую фразу: «Если у меня на руках будет инструкция, как строить синий домик, то красный домик я по ней построить не могу, так как это будет нарушение инструкции…»
Так вот, инженер — это человек, который может построить «домик» любого цвета: понимая, что такое фундамент, несущие стены, перекрытия и кровля здания. При этом неважно, какой при этом у домика будет цвет.
Сплит-системы кондиционирования обладают одной важной характеристикой — максимальным расстоянием от наружного блока до внутреннего. Причём на реальных объектах этот параметр часто становится определяющим при выборе кондиционера.
Чем больше производительность кондиционера по холоду, тем большее расстояние допускает производитель (что наглядно иллюстрирует табл. 1).
Для моделей 2 кВт холода максимальная длина трубопроводов составляет, как правило, 15 м, а для полупромышленных моделей 7 кВт и выше — до 50 м. Для некоторых моделей длина трубопроводов может достигать 100 м.
Однако часто забывают об одной важной детали — производительность кондиционера в каталогах указывается при стандартной длине трубопроводов 7,5 м, а при максимальной длине трубопроводов производительность кондиционера будет меньше. Насколько меньше — посмотрим на данные табл. 2.
В принципе, потери мощности небольшие — для 71-й модели при длине 30 м (эквивалентной длины) потери при работе на холод составляют всего 3, 2 % мощности. С другой стороны, для модели 140-й потери для 50 м длины составляют уже 1 7 %.
Теперь нужно обратить внимание на теорию.
На рис. 1 изображён классический цикл фреона в контуре кондиционера. Обращаю внимание читателя, что это цикл для любых систем на фреоне R410a, и от производительности кондиционера или марки цикл не зависит. Начнём с точки D, в которой с «начальными» параметрами (температура +7 5 °C, давление 27,2 бара) фреон попадает в конденсатор наружного блока. Фреон в данный момент — это перегретый газ, который сначала остывает до температуры насыщения (около +4 5 °C), затем начинает конденсироваться и в точке А полностью переходит из газа в жидкость. Затем происходит переохлаждение жидкости до точки А (температура +4 0 °C). Считается, что оптимальная величина переохлаждения составляет + 5 °C. После теплообменника наружного блока хладагент поступает на устройство дросселирования [это терморегулирующий вентиль (ТРВ) либо «капиллярка»], и его параметры меняются до точки B (температура + 5 °C, давление 9,3 бара).
При этом важно, что после дросселирования в жидкостный трубопровод поступает именно смесь жидкости и газа. Чем больше величина переохлаждения фреона в конденсаторе, тем бóльшая доля жидкого фреона поступает во внутренний блок, тем выше КПД кондиционера.
В-С — процесс кипения фреона во внутреннем блоке с постоянной температурой около 5 °C, С-С´ — перегрев фреона до +1 0 °C.
С´-L — процесс всасывания фреона в компрессор и потери давления при этом. Аналогично — процесс D´-M.
L-M — процесс сжатия газообразного фреона в компрессоре с повышением давления и температуры.
Потери давления на гидравлическом сопротивлении по длине трубопровода выражаются вариацией широко известной формулы Дарси-Вейсбаха:
где P1 и P2 — давления на входе и выходе из трубопровода, Па; l — длина трубопровода, м; d — внутренний диаметр трубопровода, м; λ — безразмерный коэффициент потерь на трение по длине; V — скорость потока, м/с; kгидр — гидравлическая характеристика сети; ρ — плотность жидкости, кг/м³. Как видно, потери давления в системе зависят от скорости фреона V и гидравлической характеристики сети kгидр.
Рекомендуемая скорость движения хладагента: для жидкостного трубопровода — от 0,3 до 1,2 м/с; для газового трубопровода — 6–12 м/с.
Что будет происходить с кондиционером при увеличении гидравлической характеристики сети (вследствие повышенной длины или большого количества местных сопротивлений)? Повышенные потери давления в газовом трубопроводе приведут к падению давления на входе в компрессор. Компрессор будет захватывать хладагент меньшего давления и, значит, меньшей плотности. Расход хладагента упадёт. На выходе компрессор будет выдавать меньшее давление и упадёт температура конденсации. Пониженная температура конденсации приведёт к пониженной температуре испарения и обмерзанию газового трубопровода.
Если повышенные потери давления будут происходить на жидкостном трубопроводе, то процесс окажется даже более интересным, поскольку мы выяснили, что в жидкостном трубопроводе идёт фреон в насыщенном состоянии, а точнее — даже смесь жидкости и пузырьков газа, и любые потери давления будут приводить к небольшому вскипанию хладагента и увеличению доли газа. Увеличение доли газа будет приводить к резкому увеличению объёма парогазовой смеси и возрастанию скорости движения по жидкостному трубопроводу.
Повышенная скорость движения снова будет вызывать повышенные потери давления, поэтому процесс будет «лавинообразный».
Условный график удельных потерь давления в зависимости от скорости движения фреона в трубопроводе представлен на рис. 2. Его можно рассматривать и как график потерь давления по длине. Если, к примеру, потери давления при длине трубопроводов 15 м составляют 400 Па, то при увеличении длины трубопроводов в два раза (до 30 м) потери давления увеличиваются не в два раза до 800 Па, а в семь раз — до 2800 Па.
Поэтому простое увеличение длины трубопроводов в два раза относительно его стандартных длин становится фатальным для кондиционера.
Как правильно увеличивать длину трасс больше стандартно допустимых величин?
Для этого нужно решить две проблемы. Проблема №1 — проблема повышенных потерь давления по длине в трубопроводах системы.
Как мы выяснили, повышенные потери давления приводят к резкому снижению мощности кондиционера по холоду, уменьшению расхода фреона и перегреву компрессора. Что, в свою очередь, приведёт к заклиниванию или сгоранию обмоток двигателя. Чтобы этого не происходило, мы должны уменьшить удельные потери давления путём уменьшения скорости движения в трубопроводах. То есть просто увеличить диаметры трубопроводов. Уменьшение скорости движения фреона в два раза уменьшает потери давления в четыре раза — формула (1) — и, соответственно, во столько же раз позволяет увеличить длину трубопроводов.
Чтобы проверить это на реальном оборудовании, давайте ещё раз посмотрим на табл. 2:
- потери мощности на холод для 71-й и 140-й моделей при длине 50 м;
- 71-я модель — коэффициент коррекции 0,94 (потери 6 %);
- 140-я модель — коэффициент коррекции 0,829 (потери 17, 1 %).
Значит, потери давления уменьшились в 17,1/6 = 2,85 раза.
140-я модель ровно в два раза мощнее 71-й, а трубопроводы там одинаковы (? и ? ). Поэтому скорость движения фреона ровно в два раза меньше. Потери давления, которые подчиняются квадратичной зависимости от скорости, должны быть около 3 6 %. По факту меньше, так как точка отсчёта идёт не от 0 м, а от 7,5 м.
То есть при уменьшении скорости фреона в два раза потери давления также уменьшаются как минимум в два раза (на практике даже больше, чем в два).
Теперь давайте посмотрим ещё раз на табл. 1. Диаметр жидкостного трубопровода 6,35 мм работает как на системе мощностью 2 кВт, так и на системе 7,1 кВт. На модели 7 кВт длина труб может достигать 30 м, значит никаких критичных потерь давления при такой длине нет. Располагаемое давление компрессора, как мы уже выяснили, не зависит от мощности кондиционера. Поэтому одинаковые жидкостные трубопроводы для моделей от 2 до 7 кВт объясняются отсутствием труб меньшего диаметра. Для моделей от 2 до 5 кВт жидкостный трубопровод взят «с запасом». А вот диаметр газового трубопровода подобран ближе к реальным величинам, поэтому его сечение меняется от 9,52 до 15,88 мм.
Учитывая всё вышеизложенное, можно составить следующую табл. 3.
Потери мощности при указанной максимальной длине будут от 10 до 1 5 %. Как следует из табл. 2, потери мощности допускаются до 2 0 %.
Проблема №2 — возврат масла в компрессор. Увеличивая диаметр газового трубопровода, мы уменьшаем скорость движения хладагента, а значит может возникнуть эффект отделения масла и застаивание его в трубопроводах и «масленых ловушках». Чтобы этого не происходило, в некоторых наружных блоках предусмотрены специальные устройства — маслоотделители. Но на большинстве «наружек» маслоотделителей нет. С другой стороны проблема отделения масла была больше характерна для фреона R22. Во-первых, потому что вязкость минерального масла, применяемого с фреоном R22, больше, чем полиэфирного для фреона R410a. Во-вторых, плотность R410a выше, располагаемое давление выше, поэтому диаметры трубопроводов на один-два типоразмера меньше.
В любом случае увеличение диаметра газовых трубопроводов допускается на горизонтальных участках. То есть на вертикальных участках трубопровода необходимо применять стандартный (каталожный) диаметр, а на горизонтальных можно переходить на диаметр бОльшего сечения.
Пример — в жилом комплексе города Перми на каждом этаже здания выделены специальные помещения для наружных блоков кондиционеров (рис. 3). Но длина трубопроводов, которая возникает при этом, достигает 40 м. Максимальная длина для бытовой серии любого производителя — 25 м. Однако в случае увеличения диаметра газового трубопровода до ½ длина трубопровода может достигать 40 м. Смонтирована бытовая модель RAC35.
Участок возле наружного блока выполняется стандартным (¼, ? ), далее примерно на расстоянии 1 м выполнен переход газовой трубы до диаметра ½ на пайке, и затем возле внутреннего блока обратный переход на ?. Жидкостная труба без изменений.
По такой схеме было смонтировано уже более десяти кондиционеров. Самый первый — более пяти лет назад. Все кондиционеры работают нормально.
Выводы
1. Увеличение максимальной длины трубопроводов возможно при увеличении диаметра трубопроводов. Рекомендации приведены в табл. 3.
2. Увеличение диаметра газового трубопровода возможно только на горизонтальных участках.
3. Необходимо при этом проводить дополнительную заправку хладагента на увеличенную длину жидкостного трубопровода согласно табл. 4.
Источник
Длина трассы кондиционера
При установке кондиционера существует немало аспектов, которые необходимо учитывать и контролировать. Одним из этих аспектов является длина трассы кондиционера, то есть протяженность фреоновых трубок от внешнего блока к внутреннему.
Для каждого кондиционера указана своя допустимая длина трассы, об этом подробнее написано в инструкции по установке и эксплуатации. Но в среднем, для бытовых систем охлаждения наилучшие условия работы может обеспечить длина трассы кондиционера равная 3-5 метрам.
Длина трассы кондиционера не должна ни при каких условиях быть меньше 3-х метров, даже если блоки располагаются друг за другом.
Допустимо, если протяженность магистрали будет составлять более 10-15 метров, но необходимо отметить, что в подобном случае мощность работы сплит-системы будет падать прямо пропорционально увеличению длины трассы кондиционера.
В таком случае нужна будет дозаправка сплит-системы согласно инструкции, а еще лучше рассмотреть варианты установки полупромышленных моделей систем кондиционирования.
В случае, когда внешний и внутренний блок кондиционера располагаются на небольшой удаленности друг от друга и расстояние между ними меньше чем длина фреоновых трубок, ни при каких условиях монтажники не должны обрезать или как-то укорачивать данную магистраль. Трубки следует аккуратно скрутить и закрепить рядом с внешним блоком системы охлаждения.
Т.е. если блоки кондиционера разделяет лишь толщина стены, то излишек трехметровой трассы сматывается в кольцо за внешним блоком.
Что касается предельно допустимой длины трассы, то для большинства моделей производитель заявляет максимальную длину 15 метров, для отдельных моделей 20 и даже 25 метров. Помимо длины нужно также помнить, что изгибы трассы (особенно под острым углом) также повлияют на эффективность работы кондиционера. Поэтому очень желательно не выходить за рамки рекомендаций производителя.
Учтите также, что количество фреона в новом внешнем блоке рассчитано на длину трассы не более 5 метров. Если у Вас расстояние больше, необходимо дозаправить кондиционер во время монтажных работ в соответствии с инструкцией к Вашей модели.
Как увеличить длину трассы
Бывают случаи, когда внутренний блок удален от внешнего на 30-40 метров. Особенно это актуально в новых домах, где на этаже есть специальные балкончики для установки внешних блоков. Да, один балкон на все квартиры на этаже. От самой дальней квартиры может легко быть 40 метров. Тут можно сколько угодно возмущаться по поводу проектировки, но никуда, к сожалению, не деться.
Для того, чтобы кондиционер работал при такой длине трассы, нужно в ней увеличить диаметр газовой (та, которая более толстая) трубы на один размер, т.е.:
- вместо 3/8 ставим 1/2;
- вместо 1/2 ставим 5/8.
Важный нюанс — это можно делать только на горизонтальных участках. На вертикальных — все диаметры должны быть такими, как в инструкции. Вот пример с кондиционером мощностью 2,5 кВт (09).
Диаметр газовой трубы увеличен до 1/2 на горизонтальных участках.
При установке кондиционера мы настоятельно рекомендуем обращаться только к специалистам высокой квалификации и контролировать работу монтажной бригады во избежание возможных неполадок как при монтаже, так и в последующем – при работе системы охлаждения.
Upd 10.03.2020: Появились модели, которые могут эффективно работать на длине трассы 35-40 метров без действий, описанных выше. Вот список.
Источник
Максимальная длина трубопроводов сплит-систем кондиционирования
Прежде чем рассматривать такую, казалось бы, простую тему, как максимальная длина трубопроводов (открывай каталог производителя и смотри, какая там максимальная длина), я хочу задать один вопрос: «А что такое инженер в нашей специальности?» Тот, который смотрит в каталог и выдаёт то, что там написано? Но это может сделать и обычный менеджер, знаний гидравлики и термодинамики для этого не нужно. Наверное, инженер — это специалист, который видит немного глубже цифр каталога. Специалист, который может объяснить, откуда взялись эти цифры.
Помню, был спор с уважаемым человеком, который в защиту рекламных каталогов сказал следующую фразу: «Если у меня на руках будет инструкция, как строить синий домик, то красный домик я по ней построить не могу, так как это будет нарушение инструкции…»
Так вот, инженер — это человек, который может построить «домик» любого цвета: понимая, что такое фундамент, несущие стены, перекрытия и кровля здания. При этом неважно, какой при этом у домика будет цвет.
Сплит-системы кондиционирования обладают одной важной характеристикой — максимальным расстоянием от наружного блока до внутреннего. Причём на реальных объектах этот параметр часто становится определяющим при выборе кондиционера.
Чем больше производительность кондиционера по холоду, тем большее расстояние допускает производитель (что наглядно иллюстрирует табл. 1).
Для моделей 2 кВт холода максимальная длина трубопроводов составляет, как правило, 15 м, а для полупромышленных моделей 7 кВт и выше — до 50 м. Для некоторых моделей длина трубопроводов может достигать 100 м.
Однако часто забывают об одной важной детали — производительность кондиционера в каталогах указывается при стандартной длине трубопроводов 7,5 м, а при максимальной длине трубопроводов производительность кондиционера будет меньше. Насколько меньше — посмотрим на данные табл. 2.
В принципе, потери мощности небольшие — для 71-й модели при длине 30 м (эквивалентной длины) потери при работе на холод составляют всего 3, 2 % мощности. С другой стороны, для модели 140-й потери для 50 м длины составляют уже 1 7 %.
Теперь нужно обратить внимание на теорию.
На рис. 1 изображён классический цикл фреона в контуре кондиционера. Обращаю внимание читателя, что это цикл для любых систем на фреоне R410a, и от производительности кондиционера или марки цикл не зависит. Начнём с точки D, в которой с «начальными» параметрами (температура +7 5 °C, давление 27,2 бара) фреон попадает в конденсатор наружного блока. Фреон в данный момент — это перегретый газ, который сначала остывает до температуры насыщения (около +4 5 °C), затем начинает конденсироваться и в точке А полностью переходит из газа в жидкость. Затем происходит переохлаждение жидкости до точки А (температура +4 0 °C). Считается, что оптимальная величина переохлаждения составляет + 5 °C. После теплообменника наружного блока хладагент поступает на устройство дросселирования [это терморегулирующий вентиль (ТРВ) либо «капиллярка»], и его параметры меняются до точки B (температура + 5 °C, давление 9,3 бара).
При этом важно, что после дросселирования в жидкостный трубопровод поступает именно смесь жидкости и газа. Чем больше величина переохлаждения фреона в конденсаторе, тем бóльшая доля жидкого фреона поступает во внутренний блок, тем выше КПД кондиционера.
В-С — процесс кипения фреона во внутреннем блоке с постоянной температурой около 5 °C, С-С´ — перегрев фреона до +1 0 °C.
С´-L — процесс всасывания фреона в компрессор и потери давления при этом. Аналогично — процесс D´-M.
L-M — процесс сжатия газообразного фреона в компрессоре с повышением давления и температуры.
Потери давления на гидравлическом сопротивлении по длине трубопровода выражаются вариацией широко известной формулы Дарси-Вейсбаха:
где P1 и P2 — давления на входе и выходе из трубопровода, Па; l — длина трубопровода, м; d — внутренний диаметр трубопровода, м; λ — безразмерный коэффициент потерь на трение по длине; V — скорость потока, м/с; kгидр — гидравлическая характеристика сети; ρ — плотность жидкости, кг/м³. Как видно, потери давления в системе зависят от скорости фреона V и гидравлической характеристики сети kгидр.
Рекомендуемая скорость движения хладагента: для жидкостного трубопровода — от 0,3 до 1,2 м/с; для газового трубопровода — 6–12 м/с.
Что будет происходить с кондиционером при увеличении гидравлической характеристики сети (вследствие повышенной длины или большого количества местных сопротивлений)? Повышенные потери давления в газовом трубопроводе приведут к падению давления на входе в компрессор. Компрессор будет захватывать хладагент меньшего давления и, значит, меньшей плотности. Расход хладагента упадёт. На выходе компрессор будет выдавать меньшее давление и упадёт температура конденсации. Пониженная температура конденсации приведёт к пониженной температуре испарения и обмерзанию газового трубопровода.
Если повышенные потери давления будут происходить на жидкостном трубопроводе, то процесс окажется даже более интересным, поскольку мы выяснили, что в жидкостном трубопроводе идёт фреон в насыщенном состоянии, а точнее — даже смесь жидкости и пузырьков газа, и любые потери давления будут приводить к небольшому вскипанию хладагента и увеличению доли газа. Увеличение доли газа будет приводить к резкому увеличению объёма парогазовой смеси и возрастанию скорости движения по жидкостному трубопроводу.
Повышенная скорость движения снова будет вызывать повышенные потери давления, поэтому процесс будет «лавинообразный».
Условный график удельных потерь давления в зависимости от скорости движения фреона в трубопроводе представлен на рис. 2. Его можно рассматривать и как график потерь давления по длине. Если, к примеру, потери давления при длине трубопроводов 15 м составляют 400 Па, то при увеличении длины трубопроводов в два раза (до 30 м) потери давления увеличиваются не в два раза до 800 Па, а в семь раз — до 2800 Па.
Поэтому простое увеличение длины трубопроводов в два раза относительно его стандартных длин становится фатальным для кондиционера.
Как правильно увеличивать длину трасс больше стандартно допустимых величин?
Для этого нужно решить две проблемы. Проблема №1 — проблема повышенных потерь давления по длине в трубопроводах системы.
Как мы выяснили, повышенные потери давления приводят к резкому снижению мощности кондиционера по холоду, уменьшению расхода фреона и перегреву компрессора. Что, в свою очередь, приведёт к заклиниванию или сгоранию обмоток двигателя. Чтобы этого не происходило, мы должны уменьшить удельные потери давления путём уменьшения скорости движения в трубопроводах. То есть просто увеличить диаметры трубопроводов. Уменьшение скорости движения фреона в два раза уменьшает потери давления в четыре раза — формула (1) — и, соответственно, во столько же раз позволяет увеличить длину трубопроводов.
Чтобы проверить это на реальном оборудовании, давайте ещё раз посмотрим на табл. 2:
- потери мощности на холод для 71-й и 140-й моделей при длине 50 м;
- 71-я модель — коэффициент коррекции 0,94 (потери 6 %);
- 140-я модель — коэффициент коррекции 0,829 (потери 17, 1 %).
Значит, потери давления уменьшились в 17,1/6 = 2,85 раза.
140-я модель ровно в два раза мощнее 71-й, а трубопроводы там одинаковы (? и ? ). Поэтому скорость движения фреона ровно в два раза меньше. Потери давления, которые подчиняются квадратичной зависимости от скорости, должны быть около 3 6 %. По факту меньше, так как точка отсчёта идёт не от 0 м, а от 7,5 м.
То есть при уменьшении скорости фреона в два раза потери давления также уменьшаются как минимум в два раза (на практике даже больше, чем в два).
Теперь давайте посмотрим ещё раз на табл. 1. Диаметр жидкостного трубопровода 6,35 мм работает как на системе мощностью 2 кВт, так и на системе 7,1 кВт. На модели 7 кВт длина труб может достигать 30 м, значит никаких критичных потерь давления при такой длине нет. Располагаемое давление компрессора, как мы уже выяснили, не зависит от мощности кондиционера. Поэтому одинаковые жидкостные трубопроводы для моделей от 2 до 7 кВт объясняются отсутствием труб меньшего диаметра. Для моделей от 2 до 5 кВт жидкостный трубопровод взят «с запасом». А вот диаметр газового трубопровода подобран ближе к реальным величинам, поэтому его сечение меняется от 9,52 до 15,88 мм.
Учитывая всё вышеизложенное, можно составить следующую табл. 3.
Потери мощности при указанной максимальной длине будут от 10 до 1 5 %. Как следует из табл. 2, потери мощности допускаются до 2 0 %.
Проблема №2 — возврат масла в компрессор. Увеличивая диаметр газового трубопровода, мы уменьшаем скорость движения хладагента, а значит может возникнуть эффект отделения масла и застаивание его в трубопроводах и «масленых ловушках». Чтобы этого не происходило, в некоторых наружных блоках предусмотрены специальные устройства — маслоотделители. Но на большинстве «наружек» маслоотделителей нет. С другой стороны проблема отделения масла была больше характерна для фреона R22. Во-первых, потому что вязкость минерального масла, применяемого с фреоном R22, больше, чем полиэфирного для фреона R410a. Во-вторых, плотность R410a выше, располагаемое давление выше, поэтому диаметры трубопроводов на один-два типоразмера меньше.
В любом случае увеличение диаметра газовых трубопроводов допускается на горизонтальных участках. То есть на вертикальных участках трубопровода необходимо применять стандартный (каталожный) диаметр, а на горизонтальных можно переходить на диаметр бОльшего сечения.
Пример — в жилом комплексе города Перми на каждом этаже здания выделены специальные помещения для наружных блоков кондиционеров (рис. 3). Но длина трубопроводов, которая возникает при этом, достигает 40 м. Максимальная длина для бытовой серии любого производителя — 25 м. Однако в случае увеличения диаметра газового трубопровода до ½ длина трубопровода может достигать 40 м. Смонтирована бытовая модель RAC35.
Участок возле наружного блока выполняется стандартным (¼, ? ), далее примерно на расстоянии 1 м выполнен переход газовой трубы до диаметра ½ на пайке, и затем возле внутреннего блока обратный переход на ?. Жидкостная труба без изменений.
По такой схеме было смонтировано уже более десяти кондиционеров. Самый первый — более пяти лет назад. Все кондиционеры работают нормально.
Выводы
1. Увеличение максимальной длины трубопроводов возможно при увеличении диаметра трубопроводов. Рекомендации приведены в табл. 3.
2. Увеличение диаметра газового трубопровода возможно только на горизонтальных участках.
3. Необходимо при этом проводить дополнительную заправку хладагента на увеличенную длину жидкостного трубопровода согласно табл. 4.
Источник